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Abstract. An umbilic point U on a surface Z is a place where the two principal curvatures 
of Z are equal. U is a Singularity of Z in three different senses: (i) it is the source of elliptic 
(E) or hyperbolic (H) umbilic catastrophes in the envelope of normals (‘focal surface’) of 
Z; (ii) it has index *; depending on whether the principal curvature directions of Z 
(defining the lines of curvature) rotate by f ? ~  during a circuit of U; (iii) it has a pattern of 
the ‘star’ (S), ‘lemon’ (L) or ‘monstar’ (M) type depending on the configuration of lines of 
curvature near U. We calculate the average density of umbilic points, and the fractions a 
of umbilin of the different sorts, for the case where X is a surface whose (small) deviation 
from a plane is specified by a Gaussian random function. It is always the case that 
as = = f. The other fractions depend on the degree of isotropy of the statistics of Z. 
In the isotropic case the elliptic umbilic fraction is aE = 1 -aH = 0.268, and the monstar 
fraction is a M = ; - a L = 0 . 0 5 3 .  

1. Introduction 

As well as being mathematically interesting in its own right the differential geometry 
of curved surfaces is important in a number of physical problems. This paper is about 
the classification and statistics of the simplest singular points on a surface C that do not 
depend on the orientation of C in space. These are the ‘umbilic points’, defined as 
places where the two principal curvatures of C are equal. In optics C might be a 
smooth wavefront produced for example by transmission of a plane wave through an 
irregular refracting medium or reflection from an undulating surface. Then the 
normals to C are the rays of geometrical optics; the rays through umbilic points on 
pass through the singular ‘anastigmatic points’ of the ‘focal surface’ that consists of the 
envelope of all the rays. It is near these focal points that the wave attains its greatest 
intensity (Berry 1976). In two-dimensional elasticity or flow Z might be the graph of a 
smooth function of two variables whose second derivatives define a tensor field such as 
stress, strain or strain rate. Then umbilic points are places where the orthogonal net of 
principal directions of the tensor field has a singularity (Jessop and Harris 1949). 
Sometimes umbilic points are referred to as ‘isotropic points’. 

Let the umbilic point be denoted by U. Sufficiently close to U, Z is spherical by 
definition and can be described by its deviation!@) from the tangent plane r = (x ,  y )  at 
U as follows: 

f ( r )  = $k (x  ’ + y ’) + ; ( a x 3  + 3 p x 2 y  + 3yxy’ + a y 3 )  + o(4). 

Considered as a singularity of Z, U can be classified in several different ways that 
depend on the coefficients a, p, y, S of the cubic terms. Thus U may be elliptic (E) or 
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hyperbolic (H) according to which of two possible focal surfaces is formed by the 
envelope of normals to 2 near U. This distinction is based on the catastrophe 
classification of Thom (1975). Alternatively U may have ‘index’ +t or -; depending 
on whether the local cross formed by the principal axes of curvature of C rotates 
through +T or -IT in a circuit of U. Finally U may be classified by whether the 
orthogonal net of lines of curvature formed by the principal axes in its neighbourhood 
has what we call the ‘star’ ( S ) ,  ‘lemon’ (L) or ‘monstar’ (M) pattern. The singularities 
E, H, *$ and S ,  L, M are ‘generic’ (i.e. typical): no other types can occur except for 
umbilics belonging to a set whose measure is zero in the space a, p, y, S. In 0 2 these 
classifications and the way they interlock will be summarised as a necessary basis for 
what follows even though the different types of umbilic have been partially described 
in classic works by Darboux (1896) and Gullstrand (1905) (see also Forsyth 1912), 
and fully described more recently by Porteous (1971). 

In the important class of Gaussian random surfaces (which possess only generic 
umbilic points) 2 is described by its (small) undulating deviation h ( r )  from a plane 
r( = ( x ,  y ) ) .  Many statistical properties of such surfaces were worked out by Longuet- 
Higgins (1956). Infinite in extent, they have infinitely many umbilic points and in §§ 3 
and 4 the average umbilic density is calculated together with the fractions cyE, aH, 
~ + I / z ,  as, a ~ ,  (YM of the different sorts. It is always the case that as  = a+1/2 = =$. 
However, the other quantities depend on the degree of isotropy of the randomness of 
2 ( 0  5 ) .  For isotropic disorder aE = 1 -aH = 0.268 while aM = $-aL = 0.053. The 
main results of the paper are summarised in figure 2. 

2. Classification 

The umbilic U is to be classified in three ways according to the sign of three different 
combinations of the coefficients a, p, y, 6 of the cubic terms in (1). These dis- 
criminants describe the local behaviour of the two principal curvatures of 2. They are 
also related to more accessible features of the local topography; this is most con- 
veniently described by isolating the cubic part of (1) and writing it as a function of 
polar angle ,y for a fixed radius R = (x*+y’)’/’: 

(2) 
This is an antisymmetric function of x in the sense that fc(,y + IT) = -fc(,y). It has either 
a single maximum opposite a single minimum or three maxima opposite three minima 
depending on whether the equation dfC/dx = 0 has two real roots or six. The number 
of zeros of fc(,y) itself will also be important. Clearly if dfc/dX has two zeros, fc will 
also have two; otherwise it may have either two or six. 

On the catastrophe classification U is elliptic or hyperbolic according to the 
behaviour of the contours of constant principal curvature near U. Either both prin- 
cipal curvatures have elliptical contours or both have hyperbolic ones. It can be 
shown that in the former case fc(,y) has six zeros, in the latter, two. The criterion 
therefore involves the discriminant of the cubic equation 

( 3 )  
namely: 

fc(,y) = iR 3(a cos3 x + 3 p  cos’ ,y sin ,y + 3 y  cos x sin’ ,y + S sin3 x). 

at3 + 3p t2+  3y t  + S  = 0, 
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On the pattern classification U falls into one of three categories depending on the 
local behaviour of the principal axes of curvature which generate an orthogonal net of 
lines of curvature over I;. Near U the configuration of the net is of one of the three 
types illustrated in figure 1. The criterion distinguishing S from L and M is that 

S L M 

Figure 1. Lines of curvature near umbilic points with star (S), lemon (L) and monstar (M) 
character. 

described under the index classification below. The feature distinguishing L from S 
and M is the number of straight lines passing through U; respectively one and three. 
The directions of these lines can be shown to be exactly those in which dfc/d,y = 0. The 
criterion therefore involves the discriminant of the cubic equation 

~ t ~ + ( ( 2 ~ - ~ ) t ~ - ( 2 ~ - ~ ) t - ~  =o, ( 5 )  

namely: 

if P(a,  P, y, 6 )  

5 4 [ 3 ~ ( ~ , - 2 y ) - ( S  -2P)*][3/3(S - 2 P ) - ( a  - 2 ~ ) ~ ]  

then M or S 
then L. 

On the index classification U has index +f or -4 depending again on the behaviour 
of the principal axes of curvature near U. In one complete circuit of U the axes rotate 
through half a revolution, rotating either in the same sense as the circuit executed 
(index +f) or in the opposite one (index -f). As is clear from figure 1, umbilics with L 
or M character have index +f while S umbilics have index -$. To derive the relevant 
criterion the index can be expressed as 

Ve(r) . d r  (7) 2 T  

where the integral is over an anticlockwise circuit of U and where e ( r )  is the angle 
through which the coordinate axes would have to be rotated to align them with the 
local principal axes. This angle is given by 

Then after a contour integration (7) yields the following index criterion: 

if ~ ( a , p ,  y, ~ ) - a y - y ~ + ~ ~ - ~ 2 ( ~ ~  
then index +f (L or M) 
then index -4 (S). (9) 



1812 M V Berry and J H Hannay 

In terms of the cubic f&) ,  the condition J = 0 corresponds to having six zeros with 
four of them spaced at right angles. For if t ( =  cot x )  is a solution of (9, and so too is 
- r-'( = c o t k  +&r)), then the third root is -y/& which on substitution yields J = 0. 
With J < 0 the angular spacing between adjacent roots is acute (star), while if J > 0 
not all spacings are acute (monstar). 

The interrelationship between the three separate classifications of umbilics can 
now be established. That between pattern and index classifications has already been 
described. Elementary manipulation of (4) and (9) shows that C < 0 if J > 0 so that all 
umbilics of index +$ (i.e. lemons or monstars) must be hyperbolic in character: there 
exist no elliptic lemons or monstars. This means that the Venn diagram (see figure 2 
and the instructive diagram on p 557 of Porteous 1971) depicting the interrelationship 
is effectively one dimensional. 

- S  

Figure 2. Venn diagram showing the interrelation between the three classifications of 
umbilic points and the variation of the fractions a in each class with anisotropy s. The 
dotted line is J = 0, the broken curve P = 0 and the chain curve C = 0. 

3. Random surfaces 

Consider a smooth undulating surface C specified by its deviation h(r )  from the 
reference plane r = (x, y). Let h(r)  be sufficiently small that (Vh)' = h: + h;<< 1 
everywhere and employ the following symbols for the second and third derivatives: 

The umbilics occur where u ( r )  = u(r)  and w ( r )  = 0. The number N of umbilics on any 
area A of is therefore 

N = \ / d x  dyS(u(r)-v(r))S(w(r)) I det a(;c,";;'l, 
A 

where S here denotes the Dirac delta function. The Jacobian determinant here is 
precisely J ( a ,  P, y, S )  defined in (9). 
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Now let h(r )  be a stationary random function. Then if ensemble averages are 
denoted by overbars the mean number n of umbilic points per unit area is, from (ll), 

The omission of the modulus signs which will greatly simplify subsequent calculations 
is justified by the derived interrelationship of J ,  C and P (figure 2 and its caption). 

To evaluate the averages in (12)  to (15) it is necessary to supply the statistics of the 
stationary random function h(r ) ;  specifically the joint probability distribution of U ,  U, 
w, a, p, y, S is required. The statistics to be supplied are those of a Gaussian random 
function. It is well known (see for example Longuet-Higgins 1956) that such functions 
form an ensemble, each member of which is a superposition of infinitely many 
sinusoidal components with random phases. The 'power spectrum' E ( k )  which 
specifies the relative strength of the components with wavevector k = (kx, ky) bears a 
Fourier transform relationship to the autocorrelation function p ( r )  of h ( r ) :  

p ( r )=h(ro )h( rO+r)=  d2k e".'E(k). J 
Either one of these functions completely defines the statistics of h ( r )  as follows. 

By virtue of the random phase property, the joint probability distribution of any 
set of quantities {&, t2 ,  &, . . . , &} linear in h (e.g. the values of h at different points) 
is joint Gaussian: 

where E-1 is the inverse of the matrix of correlations 
- 

B = IgiQ (18) 
which is directly related to the autocorrelation function p. 

product of any two of them is given by 
If the 6 are taken to be derivatives of h evaluated at the same place, the mean 

mrs = J d2k k:kp(k).  (21)  

It follows from the symmetry of p ( r )  and therefore of E ( k )  that mrS is zero for r + s  
odd. Any odd derivative of h is therefore uncorrelated with any even one, which for a 
joint Gaussian distribution (17) means that odd and even derivatives are statistically 
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independent. This applies in particular to the second and third derivatives (10) with 
the result that the average in (12) factorises into two separate averages over U, U, w 
and a, p, y, 6, while in (13) to (15) the averages involving U, U, w cancel. 

4. Isotropic disorder 

In this case the autocorrelation function p depends only on the distance r between ro 
and ro+r and the power spectrum E depends only on k =lkl. The moments mrS (21) 
of the power spectrum can then be written 

1 27r 
mrs = M,,,( jo cosPO sin48 de) 

where 

M,, =2?r dk k"+'E(k). idom 
It is in terms of these 'circular moments' M,, that the results will be expressed. 

is given by 
From (20), (22) and (23) the matrix of correlations for the second derivatives, E2, 

- 
u2 uu uw 3 1 0  

0 0 1  - -  
wu wu w 

with inverse 

3 -1 0 

0 8  - M4 

Taken together with (17), this means that the average over U, U, w in (12) is 

S(u -u)S(w) 

du du 1 dw S(u -u)S(w) - - 
(2?r)3/2~:/2 

1 
- - ( 3 ~  * - ~ U U  + 3u2+ 8 ~ ' )  xexp( 2M4 

2 
rM4' 

=- 

(Unless otherwise stated all integrations are from -CO to +CO.) 
For the third derivatives the correlation matrix Z3 is given by 

\xi sp sy 21 \o 1 0 51 
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with inverse 
/ ‘x, 

/ 1 0 -1 o\ 

\ 0 -1 0 I /  

The simplest average over a, P, y, S appears in (12) and is 

IJb, P, y, S)l 

d T ( X 2 + Z 2 - Y 2 - T 2 1  

x exp[ -$ (X3  + Y z  + Z 2  + T2) ] .  

This integration is elementary in polar coordinates 

X = r cos 0, 

Y = p  cos #, 
Z = r sin 0, 

T = p  sin 4, 

and gives the value 8.n’. Thus 
- 
IJl =M6/8. ( 3 3 )  

With (12) and (26) the average number of umbilic points per unit area is therefore 

For an autocorrelation function with the Gaussian form exp(-r2/A2) this gives n = 
3 / r A  ’, while for a Lorentzian (1 + r 2 / A  ’)-I, n is three times this value. 

It is obvious from (31 )  that half the value of the integral comes from the region in 
X,  Y ,  2, T where the quantity between the modulus signs is positive and half from 
where it is negative. From (13) this implies at once that 

a+1/2 = a-1/2 = as =3. (35) 

As will be shown in 9 5 this result is not restricted to isotropically disordered surfaces. 
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Now consider the integral involved in aE (equation (14)). This is similar to (13) but 
the integral contains a step function of C defined by (4). The transformations (30) and 
(32) give 

-J(a, P, Y, S)H(C(a,  P, Y, 6)) 

One angular integration is trivial and the substitution 

r =pu 

enables the integral over p to be performed. After some reduction this gives 

(YE=-+- 9 8 '  u ( 1 - u 2 )  sin-'[ (('- u)3(3u 16u3 + 1)) 1/21 

50 ?T /1/3dU ( 1 + U 2 l 3  

(37) 

A simple numerical integration then yields 

aE = 0.268. (39) 
The expression (38) has a simple geometrical significance in terms of the cubic (2) 
which is described in the appendix. 

The fraction aL (equation (15)) can be calculated either directly by the trans- 
formations (30), (32) and (37) used for aE, or from the geometrical argument outlined 
in the appendix. This shows that aL is obtained by replacing U by u/3 within the 
square root in (38), and the sin-' by -cos-', replacing the range of integration by 1 to 
3: 

Integrated numerically this gives 

aL = 0.447 i.e. aM = 0.053. (41) 

5. Anisotropic disorder 

If the autocorrelation function p ( r )  is not circularly symmetric the correlation matrices 
(24) and (27) will have elements depending on its detailed form. This will affect both 
the mean density of umbilic points n and the various fractions a with the important 
exception of a*1/2. It follows quite generally from the circuit definition (7) that 
deformations of a surface can create or destroy umbilic points only in groups for which 
the algebraic sum of the indices (the 'total index') is zero (generically these will be 
pairs with index +; and -4). For a closed (one-sided) surface this means that the total 
index must be a constant, and it is not difficult to show that this constant is actually 
equal to the integrated Gaussian curvature of the surface divided by 27r (i.e. to the 
Euler characteristic of the surface). Imagine now that the random surface X is locally 
part of a huge dimpled torus. Since the statistics are stationary, the vanishing of the 
total index over the whole torus, required by the zero integrated Gaussian curvature, 
implies the vanishing of the average total index over any part of the torus and hence 
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over any part of C. The result (35) for ( Y * ~ / Z  therefore applies to all stationary random 
functions, and in particular to Gaussian ones whatever form the correlation function 
may take. (The result need not, however, apply to random surfaces like sponges 
which could have integrated Gaussian curvature proportional to their surface area.) 

One particularly simple form of anisotropisation will now be considered quan- 
titatively-that made by stretching an initially isotropic surface by a factor 0- along x 
and simultaneously compressing it by the same factor along y. The correlation 
function p becomes wider along x and narrower along y in exactly the same way, with 
the associated reciprocal effect on the spectrum E. The inverse correlation matrices 
corresponding to (25) and (28) are then easily found to be, respectively, 

and 

where the M are the circular moments of the isotropic spectrum before stretching. 
In the average (26) over second derivatives, the quadratic form in the exponent, 

now being governed by (42), changes to 3u4u2 - 2uu - 30--4u2 + 8 w 2 .  In terms of the 
convenient ‘reduced stretch’ s defined by 

which ranges from 0 to 1 as 0- ranges from 1 to CD, the integration then gives 
2 l V S 2  1/2 

(45) 

The averaggs over the third derivatives are less easily converted. In the simplest 
one (29) for (JI, the quadratic form in the exponent, now being governed by (43), 
changes to u 6 a 2 - 2 a 2 ~ y  + ~ u - ~ ~ ~ + u - ~ S ~ - ~ U - ~ P S  +5u2p2.  To follow the isotropic 
calculation as closely as possible, introduce the change of variables 

S ( u - v ) S ( w ) =  4 -4 ,U2=-(+ . 
7rM4(3u4-2+30- ) 7rM4 1+2s  

u3(Y -g - ‘ y  =$(;M6)”’(X + Y ) ,  0--36 -0-0 = 3(;M6)1’2(z + T ) ,  
(46) 

U@ = $(3M6)1/2(2 - T ) ,  (T-ly =$(fn/r,)’’’(x- Y ) .  
This gives 

with 
0 0 
0 

3u-2 - u2 u2 - 0--2 

2 -2 2 -2 U -0- -0- -0- 

0 0 3u2 - CT --U 

0 0 U -0- 
-2 2 

M6 9 = -(XYZT) 
32 
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The eigenvalues of this matrix are 

211/(1 - s ~ ) ’ / ~ ,  212/(1 -s2)l/’, --&/(I -s2)1/2, --&/(I - s ~ ) ” ~ ,  

where the 1 are positive quantities which remain finite for all 0 < s < 1 : 

f 1  = s +(2s2+2s + 1)’12 

I3 = -s + ( 2 2  + 2s + 1) l l 2  

f 2  = -s + ( 2 2  - 2s + 1)’12 

l4 = s + (2s’ - 2s + ljl/’. 
(49) 

An orthogonal change of variables to diagonalize the matrix in (48) therefore yields 

The integral Z(s) in this expression can be evaluated most easily by an indirect 
method. Two further integrations over auxiliary variables p and v are introduced to 
give 

d r  I v I e ~ p [ - i p ( 1 1 ( ~ + 1 2 q ~ - f ~ ~ ~ - l ~ r ~ ) ]  

(that this expression is equivalent to (50) can be seen by performing first the p integral 
and then the v one). The (, q, 5, r integrations in (51) are trivial and the v integral 
(with the correct interpretation as a generalised Fourier transform) gives 

(52) 
1 d  1 
p d p  [(l -2ip11)(1-2ip12)(1 +2ipf3)(1 +2ip14)] Z(s)=27r/ --- 1/2 dP* 

The singularities of the integrand are four branch points on the imaginary axis, one 
pair above and another below the real axis. There is no singularity at the origin 
because by (49), 1’ + l2  = l3  + l4 so that the derivative is zero there. If branch cuts are 
inserted between each pair of branch points the contour of integration can be closed 
around either half-plane. Z(s) is therefore given by either one of the two, equal, 
branch cut integrals. The two alternatives correspond to the evaluation of 2JH(J) 
(upper half-plane) or 2(-J)H(-J) (lower half-plane), which are therefore individually 
equal to IJI. This is the statement that umbilics of index zki  are equally likely. The 
(upper) branch cut integral is 

63) 
1 1/14 1 

1/2 dFL, [-(I +2pl i ) ( l+2p~z)( l  -2pls)(l-2p14)1 

where an integration by parts has been performed to eliminate the derivative. 
This integral can be evaluated in terms of complete elliptic integrals (Byrd and 

Friedman 1954) but the resulting expression is very long. Instead numerical evalua- 
tion (with the trigonometric substitution sin28 = [pf4 + (1 -p)f3]/2f3f4) shows that Z(s) 
rises monotonically from the value 87r2 when s = 0 (isotropy) to 1.88 x 87r2 when s = 1 
(extreme anisotropy). Thus 

Z(s) = 47r I,,,, 7 
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Taken together with (12) and (45) this gives 

showing that area preserving strain leaves the density of umbilic points virtually 
constant. 

Anisotropisation does, however, markedly change the character of the umbilic 
points as characterised by the fractions U E  and aL. A great simplification arises in the 
case of aE because C(a, p, y, S) = C(u3a, up, a- ly,  K 3 S ) .  This means that when, in 
analogy with the isotropic case, the transformations (46) and (32) are applied the 
resulting equation has a form identical with (36) apart from the replacement 

The terms involving 8 and C#J vanish on integration giving the result that the only effect 
of anisotropy on mH(c) is a factor 1/(1 -s2)l/’. From (14), (33) and (54) therefore 

( 0 . 2 6 8 b ( ~ , ~ 0 . 1 4 3 ) .  
0.268 

aE = 2(s)/87r2 (57) 

In the case of a l .  the same simplification does not occur and there is no obvious 
way to evaluate IJIH(P) analytically, though the behaviour of aL for extreme aniso- 
tropy can be found as follows. Construct the quantities a = u3a, p‘  = up, y’ = f l y ,  
S‘= (7-3S so that the probability distribution for a’, p’, y ’ ,  6‘ is independent of U. In 
terms of these well behaved quantities, as U + CD 

J + Cr2(p’S’- yf2) 

P + U*6 2(y’2 - P’S’). 

Therefore for extreme anisotropy P is always negative with J is positive so that all 
umbilics with index +i are lemons; there are no monstars: 

(59) 1 
f f L = Z ,  a M = 0 .  

The behaviour of aL for intermediate degrees of anisotropy s h o g  in figure 2 was 
obtained by direct Monte Carlo numerical evaluation of ]JIH(P)/IJI. 

6. Conclusion 

The classification of umbilic points in figure 2 illustrates the fact that the same 
geometric object can be a singularity in several different senses; it would be a mistake 
to assume that any one of the classifications of singularity (e.g. catastrophes) is 
necessarily more fundamental than the others. The index classification, for example, 
can provide important information on the global characteristics of the focal pattern 
beyond an illuminated irregular diffracting screen, in contrast to the local information 
provided by the catastrophe classification. 

The main results of our ‘statistical singularity theory’ are summarised in figure 2. 
The most striking conclusion is the rarity of monstar patterns and to a lesser extent 
elliptic umbilic catastrophes. It is tempting to think that this explains the difficulties 
experienced by ”hom and Poston (private communications) in producing elliptic 
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umbilics by optical means. Any such argument would depend on Gaussian random 
surfaces being representative of other irregular surfaces. But it is not difficult to create 
a whole class of surfaces whose umbilics must all be elliptic. These surfaces (which do 
not contravene the index laws because they cannot be closed and can depart little from 
a plane only locally) are those of liquids in equilibrium under surface tension at 
uniform pressure (e.g. small water drops on a dirty solid surface). It is plausible 
though that such surfaces are the exception rather than the rule in the entirety of 
irregular surfaces that nature generates. 
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Appendix. Geometrical interpretation of the integds for isotropic disorder 

The function cubic fck), defined as (2), describing the behaviour of the surface C in 
the neighbourhood of an umbilic point can be re-expressed as the real part of a 
complex function of a, /3, y, S as follows 

f&) = &R3[(a - 3y) cos 3x - (6 - 3/31 sin 3x ,+ 3(a + y )  cos x + 3(p +S)  sin x] 
64.1) -&R3 - R ~ ( ~  eiCu-@)+p  ei(3x+9)) 

where the variables r, p, 8, 4 are exactly those defined in (32). As the angle x 
increases from 0 to 27r the complex number in (A. 1) traces out a symmetrical figure in 
the Argand diagram generated by the sum of two 'vectors' one rotating three times as 
fast as the other. The orientation of the figure will depend on the angles 8 and 4 but 
its shape depends only on the ratio 3u( = 3 r / p )  of the lengths of the two vectors. There 
are four distinct regimes of U which produce the shapes shown at the bottom of figure 
3. For a figure with a given shape and orientation the following rules, easily verified 
from 0 2, serve to identify the status of the umbilic; 

J > O  (=index+$ figure has loops 

J < O  (=index -f) figure has no loops 

C > 0 (E elliptic) 

C < 0 (= hyperbolic) 

P > 0 (= not lemon) 

P<O (Elemon) figure tangent lies parallel to imaginary axis twice. 

From these rules it can be seen by referring to figure 3 that there are no elliptic 
umbilics for u > 1, while for U < f  all umbilics are elliptic. For intermediate values of u 
the umbilic may or  may not be elliptic depending on the orientation of the figure. 
Similarly there are no lemon umbilics for u < 1; while for u > 3 all umbilics are lemon. 
In between, an umbilic may be lemon or not according to the figure orientation. 

It is now possible to interpret the integrals (38) and (40) in a rather simple way. For 
an isotropically disordered surface it follows from (32) that the complex numbers reie 
and pi" have identical, independent, circular Gaussian distributions in the Argand 

figure intersects imaginary axis six times 

figure intersects imaginary axis twice 

figure tangent lies parallel to imaginary axis six times 
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Lemon 
fraction 

Figure 3. Representation of the cubic expansion near an umbilic point by figures in the 
Argand diagram, generated by the resultant of three rotating vectors, one turning three 
times as fast as the other. The ratio U of the lengths of these vectors determines the shape 
of each figure and the resulting sector angles determine the chance that the umbilic is 
elliptic (for U < 1) and lemon (for U > 1). 

diagram. This means that a figure of any given shape determined by the ratio U is 
equally likely to be found in any orientation. The angles appearing in (38) and (40) 
are just the sector angles marked in figure 3, which when divided by 7r/2 give the 
probability that the figure represents an elliptic umbilic in the first case and a lemon 
umbilic in the second. The factor 4ull-u21/(1 + u ' ) ~  in each integral is the proba- 
bility distribution for the ratio U, taking into account the Jacobian weighting factor 
lp2-rZI .  When this function is integrated from 0 to 4 it gives the same answer as when 
integrated from 3 to CO, namely 9/50. 
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